When the Schur functor induces a triangle-equivalence between Gorenstein defect categories

نویسندگان

چکیده

Let R be an Artin algebra and e idempotent of R. Assume that Tor (Re, G) = 0 for any G ∈ Gproj eRe i sufficiently large. Necessary sufficient conditions are given the Schur functor Se to induce a triangle-equivalence ⅅdef(R) ≃ ⅅdef(eRe). Combining this with result Psaroudakis et al. (2014), we provide necessary singular equivalence ⅅsg(R) ⅅsg(eRe) restrict GprojR GprojeRe. Applying these triangular matrix $$T \left( {\matrix{A & M \cr B } \right)$$ , corresponding results between candidate categories T A (resp. B) obtained. As consequence, infer Gorensteinness CM (Cohen-Macaulay)-freeness from those B). Some concrete examples indicate one can realise Gorenstein defect category as singularity its corner algebras.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Isomorphisms Between Functor Categories

The scheme ChoiceD concerns a non-empty set A, a non-empty set B, and a binary predicate P, and states that: there exists a function h from A into B such that for every element a of A holds P[a, h(a)] provided the parameters meet the following requirement: • for every element a of A there exists an element b of B such that P[a, b]. Let A, B, C be non-empty sets, and let f be a function from A i...

متن کامل

An equivalence functor between local vector lattices and vector lattices

We call a local vector lattice any vector lattice with a distinguished positive strong unit and having exactly one maximal ideal (its radical). We provide a short study of local vector lattices. In this regards, some characterizations of local vector lattices are given. For instance, we prove that a vector lattice with a distinguished strong unit is local if and only if it is clean with non no-...

متن کامل

Gorenstein projective objects in Abelian categories

Let $mathcal {A}$ be an abelian category with enough projective objects and $mathcal {X}$ be a full subcategory of $mathcal {A}$. We define Gorenstein projective objects with respect to $mathcal {X}$ and $mathcal{Y}_{mathcal{X}}$, respectively, where $mathcal{Y}_{mathcal{X}}$=${ Yin Ch(mathcal {A})| Y$ is acyclic and $Z_{n}Yinmathcal{X}}$. We point out that under certain hypotheses, these two G...

متن کامل

Recollements of Derived Functor Categories ∗ †

We give an equivalence between the derived category of a locally finitely presented category and the derived category of contravariant functors from its finitely presented subcategory to the category of abelian groups, in the spirit of Krause’s work [H. Krause, Approximations and adjoints in homotopy categories, Math. Ann. 353 (2012), 765–781]. Then we provide a criterion for the existence of r...

متن کامل

A-infinity algebras, modules and functor categories

In this survey, we first present basic facts on A-infinity algebras and modules including their use in describing triangulated categories. Then we describe the Quillen model approach to A-infinity structures following K. Lefèvre’s thesis. Finally, starting from an idea of V. Lyubashenko’s, we give a conceptual construction of A-infinity functor categories using a suitable closed monoidal catego...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Science China-mathematics

سال: 2021

ISSN: ['1674-7283', '1869-1862']

DOI: https://doi.org/10.1007/s11425-021-1899-3